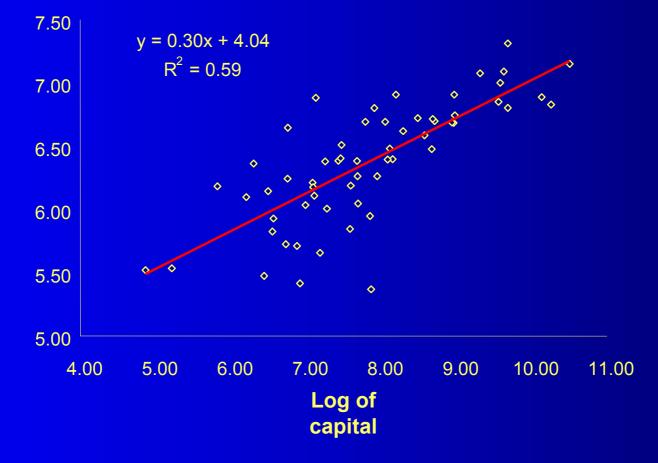
Oil Company Crisis

Balancing Structure, Profitability and Growth

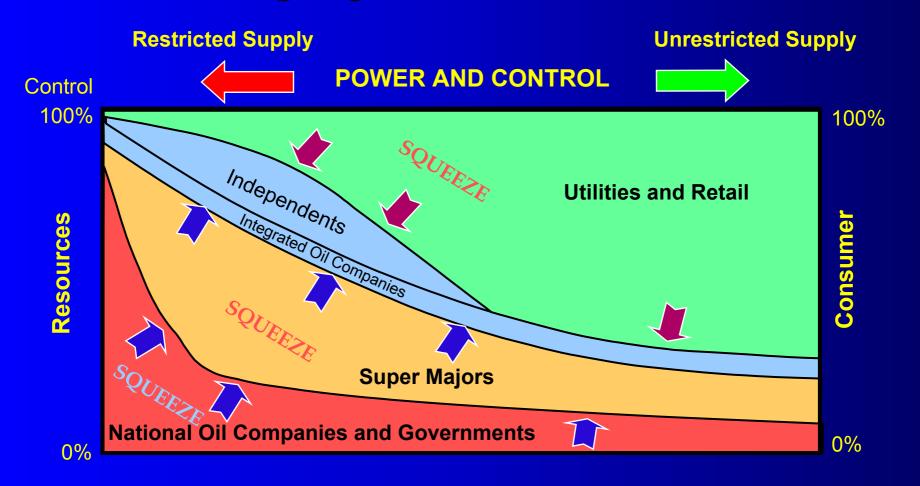
Dr Robert Arnott
IAEE Conference Prague
7 June 2003



Why managers want to "grow value"

CEO base salary to capital

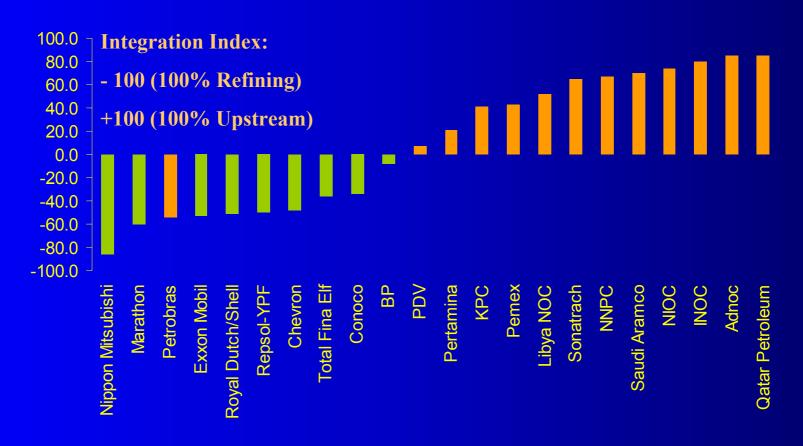
(O&G companies, 1996-98)


The Challenge

- A decade of earnings growth has been achieved largely through cutting costs
- The mega-mergers of the late 1990s represent the end of this process
- Companies have not delivered growth expectations
- Vertical disintegration is widely proposed

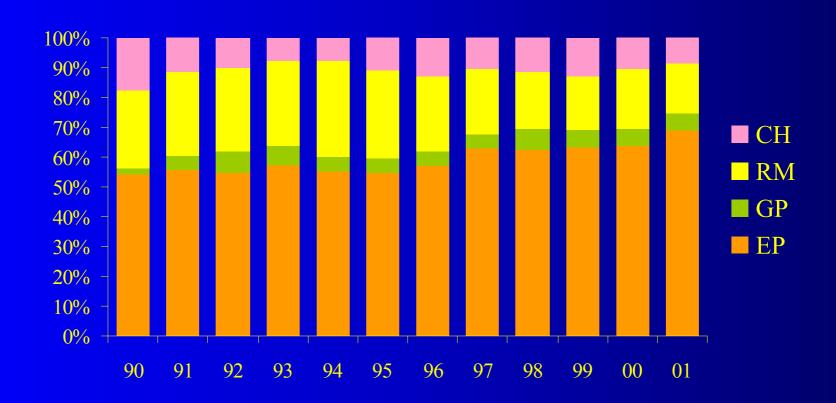
3/23/2004

Changing Market Pressures



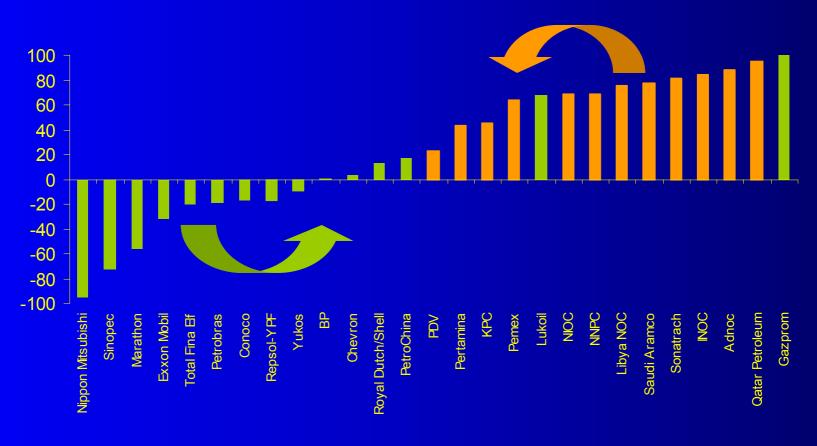
What do we mean by integration?

- Operational integration
 - Integrated chain
 - Lower transaction costs
- Financial integration
 - Ability to fund projects cheaply
 - Manage cash flows
- The difference
 - Related to funding, rather than to operations



Operational Integration in 1991

Capital Rotation 1990-2001



7

3/23/2004

Current State of Integration

So why disintegrate?

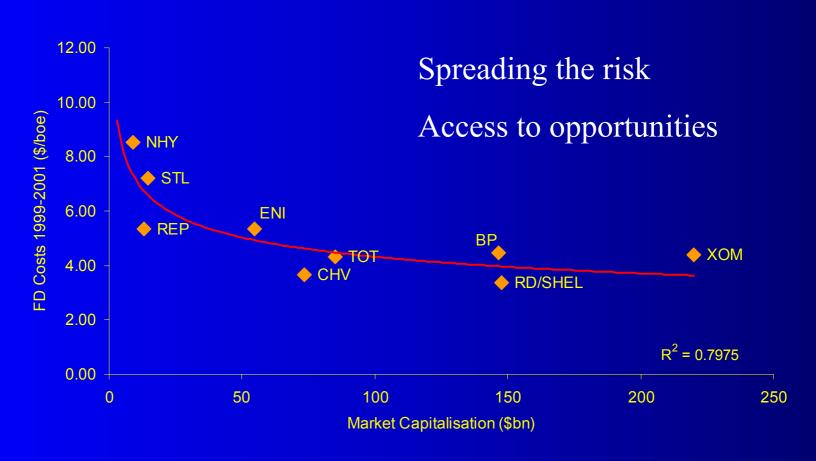
In a perfect world:

- Focussed businesses are allegedly better managed
- Industry maturity has reduced transaction costs to an irrelevancy
- Investors can construct balanced portfolios for themselves

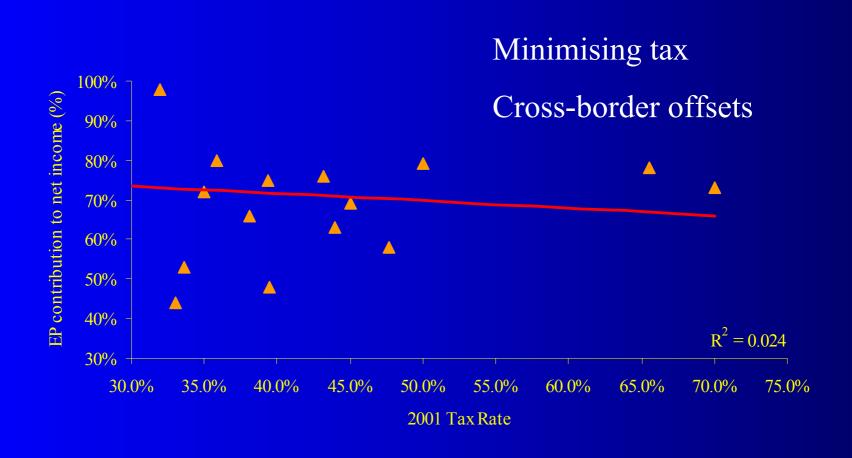
But, markets are not perfect!

Exploiting the inefficiencies

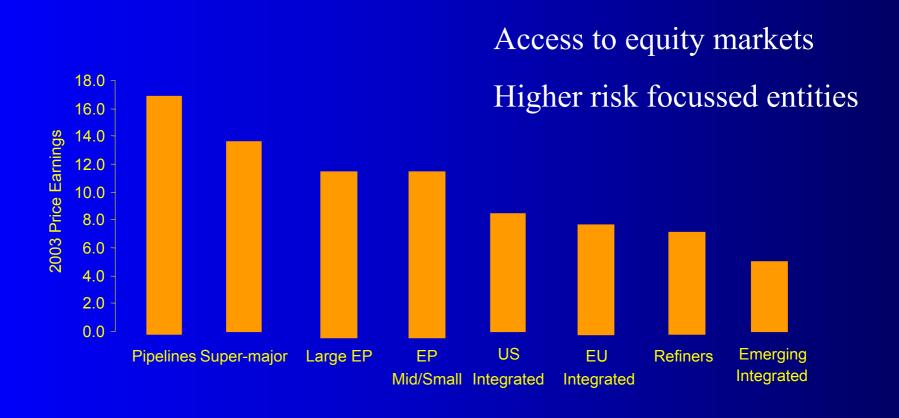
- Political
 - issues of access, differing terms, embargos
- Institutional
 - OPEC, cartelisation
- Economic
 - pricing issues, investment



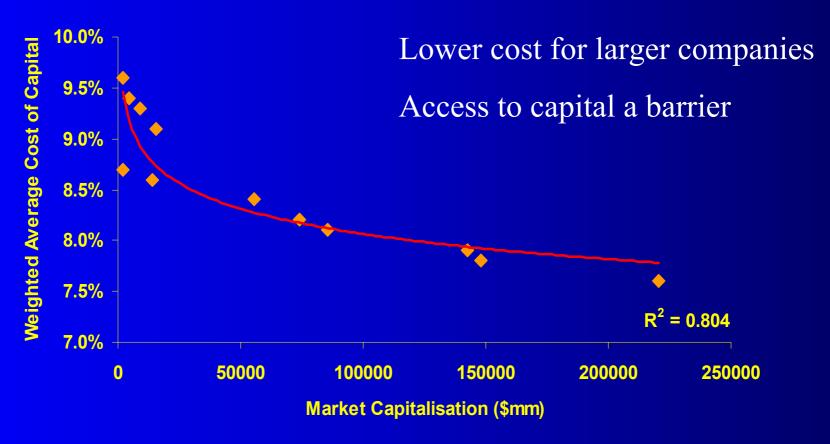
Exploiting the inefficiencies

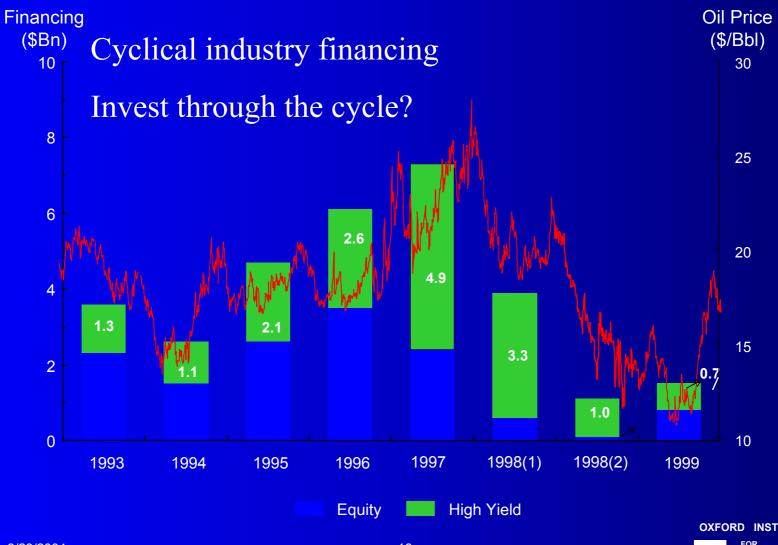

- Financial
 - tax, cost of capital, risk mitigation, default risk, markets
- Operational
 - local monopolies, supply chains, project skills, reputation
- Technical
 - information transfer, cost of information

Upstream Efficiency



Taxation




Financial Markets

Cost of Capital

Access to Capital

Muddled Thinking in the Gas Chain

- Despite losing faith in oil chains, oil companies are keen to integrate vertically into gas and power
- They should instead concentrate on two motives:
 - focusing on their strengths
 - exploiting market inefficiencies

This may or may not require integration

Structure Conclusions

- Companies should identify and quantify market inefficiencies – operational and financial
- Companies should identify the risks that would accrue from de-integration
- Corporate capabilities are not merely energyspecific: they may comprise financial skills or customer franchise

Oil Company Crisis

Balancing Structure, Profitability and Growth

Dr Robert Arnott 7th June 2003

OXFORD INSTITUTE

FOR

ENERGY STUDIES

3/23/2004

20

Profitability, Growth and Value

- Companies have concentrated internal and external attention on one metric: ROACE
- Even if accurate, ROACE is too limited, as any growth at above WACC adds value
- Accounting measures compound the problem: they overstate the profitability of old assets and understate the profitability of new ones

Case Study: Pipeline Economics

Year 0	1	2	3	4	5	6	7
Cash flow model:							
Investment (1,000)							
Cash flow from operations	200	210	221	232	243	255	268
Free Cash Flow (1,000)	200	210	221	232	243	255	268
Internal Rate of Return 13.1%							
Accounting results:							
Opening Capital 0	1,000	857	714	571	429	286	143
Depreciation 0	(143)	(143)	(143)	(143)	(143)	(143)	(143)
Closing Capital 1,000	857	714	571	429	286	143	0
Profit 0	57	67	78	89	100	112	125
Return on Opening Capital	5.7%	7.8%	10.9%	15.5%	23.4%	39.3%	87.6%
Economic results:							
Opening NPV 0	1,000	931	844	734	599	435	237
Impairment of value 0	(69)	(88)	(110)	(135)	(164)	(198)	(237)
Closing NPV 1,000	931	844	734	599	435	237	0
Profit	131	122	111	97	79	57	31
Economic ROCE (opening)	13.1%	13.1%	13.1%	13.1%	13.1%	13.1%	13.1%

OXFORD INSTITUTE

FOR ENERGY STUDIES

Integrating DCF Analysis with Management Accounts

- Investments are originally justified with DCFs, but subsequent performance is monitored and presented using conventional accounts
- Two alternative approaches are improvements:
 CFROI and adjusted EVA_{TM}
- Both permit investment and performance measurement to be related seamlessly

Method: Adjusted EVA_{TM}

		1 1
A against in a	$\mathbf{N}/\mathbf{L} \triangle \mathbf{t}$	$\mathbf{h} \circ \mathbf{d}$
Accounting 1	\mathbf{v}	
1 1000 militing		\mathbf{H}

Adjusted EVA_{TM} Method

Ann change in NDV of recorves

Return on Capital Employed	12.0%	Accounting ROCE Adjusted ROCE	12.0% 8.9%
Capital Employed	10,000	Adjusted Opening Capital Emp.	14,000
Shareholders' Equity	7,500	Net Present Value of reserves	8,000
Minority Interests	500	Book value of reserves	(4,000)
Net Debt	2,000	Opening Capital Employed	10,000
Opening Capital Employed:			40.000
Net Operating Profit After Tax	1,200	Adjusted NOPAT	1,250
Notional Tax	(500)	Unrealised gains/losses	50
Operating Profit (EBIT)	1,700	Accounting NOPAT	1,200
NOPAT:		Unrealised gains/losses	50
		Ann. net investment in reserves	(200 <u>)</u>

250

Oil Company Historical Performance

 We have used a modified EVA_{TM} – the main adjustment being substitution of net present value for book upstream values, and the inclusion of net changes in these to profit

 The key finding is that the profitability of the industry drops from around 12% to around 9%, slightly above its WACC

Case Study: Oil Company Performance

	1997	1998	1999	2000	2001	Average
Book return on capital						
NOPAT	35,560	18,257	25,900	57,650	43,810	36,236
Opening book capital employed including goodwill	248,506	258,487	267,086	351,233	351,538	295,370
Return on capital employed including goodwill	14.30%	7.10%	9.70%	16.40%	12.50%	12.00%
Adjusted return on capital employed						
Adjusted NOPAT	-37,867	-42,333	141,346	145,775	-109,907	19,403
Adjusted opening capital employed	294,191	277,023	225,033	424,443	511,146	346,367
Adj return on adj opening capital employed	-12.90%	-15.30%	62.80%	34.30%	-21.50%	9.50%
Realised profit/adj opening capital employed	12.10%	6.60%	11.50%	13.60%	8.60%	10.50%

Why does this matter?

- If investors are misled as to likely future profitability, they will react adversely
- If managers set too high a hurdle rate of return they will under-invest
- If the profitability of the upstream is overestimated then such investment as is made will be skewed

Case Study: Royal Dutch/Shell

 The CFROI approach yields very similar results but the detail of the adjustments make it difficult to aggregate across the sector

 The following slide shows calculations made for Royal Dutch/Shell

CFROI Case Study: Shell

Summary 1999-2001

C	IDD
Current	IKK
Cullult	

Upstream 13.0%

Downstream 5.7%

Chemicals 4.4%

Gas and Power 1.5%

Weighted Average 9.1%

Profitability Conclusions

- It is essential to develop an internal management accounting system that integrates DCF analysis with performance measurement
- This should be transparent enough for presentation to investors
- The financial technology for this is already well developed

